## Annuities / Future Value

Learning Goals - defining an annuity<br>- understand how annuities work<br>- use the annuity formula to solve real life problems

Annuity $\quad$ - series of payments or deposits made at regular intervals
Simple Annuity - payment interval is the same as the compounding period

Ordinary Annuity - payment/deposit is made at the END of each interval

Matthew deposits $\$ 400$ every month for 6 months. The money earns $6 \%$ interest per year, compounded monthly.
a. How much money will he deposit in total?

$$
400(6)=2400
$$

b. How much money will he have at the end of 6 months?


## Future Value of an Annuity (sum)

deposit at intervals

interest / compounding period

$$
\begin{aligned}
\mathrm{FV}= & 400\left[\frac{\left(1+\frac{0.06}{2}\right)^{6}-1}{\frac{0.06}{12}}\right] \\
& =2430.20 \\
& \text { He has } \$ 2430.20
\end{aligned}
$$

Thomas and Emily are saving up for retirement.
Thomas deposits $\$ 1000 /$ year for 40 years. Emily deposits $\$ 2000 /$ year for 20 years.

Both earn 8\% interest per year compounded annually.
Who has a better retirement plan?
Thomas

$$
\begin{aligned}
F V & =1000\left[\frac{\left(1+\frac{0.08}{1}\right)^{40}-1}{\frac{0.08}{1}}\right] \\
& =259056.52
\end{aligned}
$$

Emily

$$
F V=2000\left[\frac{(1+0.08)^{20}-1}{0.08}\right]
$$

$$
=91523.93
$$

$\therefore$ Thomas has more $\$$ $\therefore$ Investing for a longer time is better.

On the Boards...

1. Ashley deposits $\$ 500$ every 6 months for 5 years. She gets an interest rate of $4 \%$ compounded semi-annually. How much money will she have at the end of 5 years?

$$
\begin{aligned}
F V & =500\left[\frac{\left(1+\frac{0.04}{2}\right)^{10}-1}{\frac{0.04}{2}}\right] \\
& =5474.86
\end{aligned}
$$

1. Agnes starts an Education Savings Plan for her granddaughter. She deposits $\$ 200$ every 3 months starting when the baby is 3 months old. Her interest is $5 \%$ compounded quarterly. How much money will accumulate by the time she is 18 years old?

$$
\begin{aligned}
F V & =200\left[\frac{\left(1+\frac{0.05}{4}\right)^{72}-1}{\frac{0.05}{4}}\right] \\
& =23134.72
\end{aligned}
$$

1. Shannon deposits $\$ 3600$ for 3 years at an interest rate of $6 \%$ compounded quarterly. Her friend Katie will deposit \$100 at the end of each month for 3 years at $5 \%$ interest compounded monthly.
2. Who will have more money?
3. By how much?

Shannon

$$
\begin{aligned}
A & =P(1+i)^{n} \\
& =3600\left(1+\frac{0.06}{4}\right)^{12} \\
& =4304.23
\end{aligned}
$$

Katie

$$
\begin{aligned}
F V & =100\left[\frac{\left(1+\frac{0.05}{12}\right)^{36}-1}{\frac{0.05}{12}}\right] \\
& =3875.33
\end{aligned}
$$

$\therefore$ Shannon has more money by $\$ 428.90$

Seatwork
pg 415 \# 2, 6, 9


