Exponential Models

Nov 6-3:40 PM

A scientist has discovered a new strain of bacteria. The bacteria culture initially contained 1000 bacteria and the bacteria are doubling every hour.

a. Complete the chart for the first five hours:

									-	
Time intervals	begin	1 hr	2 hr	3 hr	4 hr	5 hr	6 hr	7 hr	8 hr	9 hr
Bacteria present	1000	b00	4000	3000 I	6000 3	2000 2000	4000 12	29. 2000	6000 5	12000
1st diff.	1000	260	0 400	0 800	b 160	~ * **********************************	~ ∞ —	>not	a s	traight
2nd diff.	lov	1 (0 2	2000 G) (4000 8		S 5000 -	—>nı	of g	line Wad	ratic
ratio	2 10 = 2	000 00	<u>4000</u> <u>2000</u>	8000 4000 = 2	2		exf	vone.	ntia	/

<u>Ex</u> ţ	ponential Models
	$y=ab^{x}$ example: $y=4(2)^{x}$
	- in a table of values the 1st and 2nd differences have a common ratio

Nov 6-3:40 PM

Nov 25-10:54 AM

Nov 25-10:54 AM

Comparing Pairs of Exponential Relations

Example:

Mr. Verberne scrapes 100 bacteria off from one seat in his class and 100 bacteria off another seat. He places each group in a separate petri-dish to grow.

Colony A doubles in size every hour.

Colony B triples in size every hour.

The growth of these bacteria can be modeled with the equations:

COLONY A: $P = 100(2)^{t}$ COLONY B: $P = 100(2)^{t}$

COLONY B: $P = 100(3)^{t}$

Graph these functions on the same screen using the graphing calculators.

Nov 6-4:07 PM

Apr 18-10:59 AM

Nov 6-4:08 PM

